作者 | 代立冬
编辑 | Debra Chen
Apache 是现代数据工作流编排平台,具有非常强大的可视化能力,DolphinScheduler 致力于使数据工程师、分析师、数据科学家等数据工作者都可以简单轻松地搭建各种数据工作流,让数据处理流程更简单可靠。
DolphinScheduler 非常易于使用(easy to use),目前有四种创建工作流的方法:
在 UI 界面上直接通过拖放任务的方式来创建任务
PyDolphinScheduler,通过 Python API 创建工作流,也就是 workflow as code 的方式
编写 yaml 文件,通过 yaml 创建工作流(目前必须安装 PyDolphinScheduler)
通过 Open API 的方式来创建工作流
以上 4 种总有一种方式适合您的场景!
得益于 DolphinScheduler 采用无中心化的整体架构设计,使得 DolphinScheduler 调度性能也是同类开源数据工作流编排平台的 5 倍以上,如果您正有这样的性能问题或者调度延时问题,也不妨试试 DolphinScheduler。
DolphinScheduler界面
好的,接下来言归正题,有不少用户想在 DolphinScheduler 扩展新的任务插件支持(比如添加 Kettle),DolphinScheduler 的任务插件体系是基于 SPI 来进行任务插件扩展的。
SPI 是 Service Provider Interface 的缩写,是一种常见的服务提供发现机制,比如知名的 OLAP 引擎 Presto 也是使用 SPI 来扩展的。在 java.util.ServiceLoader 的文档里有比较详细的介绍,其抽象的概念是指动态加载某个服务实现。
比如 java.sql.Driver 接口,不同厂商可以针对同一接口做出不同的实现,比如 MySQL 和 PostgreSQL 都有不同的实现提供给用户,而 Java 的 SPI 机制可以为某个接口寻找服务实现。Java 中 SPI 机制主要思想是将装配的控制权移到程序之外,在模块化设计中这个机制尤其重要,其核心思想就是解耦。
SPI 整体机制图如下:
SPI 机制中有 4 个重要的组件 :
服务接口 Service Interface
服务接口实现:不同的服务提供方可以提供一个或多个实现;框架或者系统本身也可以提供默认的实现
提供者注册 API(Provider Registration API),这是提供者用来注册实现的
服务访问 API (Service Access API) ,这是调用方用来获取服务的实例的接口
Apache DolphinScheduler 从 2.0 版本开始引入 SPI。将 Apache DolphinScheduler 的 Task 看成一个执行服务,而我们需要根据使用者的选择去执行不同的服务,如果没有的服务,则需要我们自己扩充,我们只需要完成我们的 Task 具体实现逻辑,然后遵守 SPI 的规则,编译成 Jar 并上传到指定目录,就可以使用我们自己编写的 Task 插件来执行具体的任务了。
除了前面提到的 Presto 外,还有以下技术都使用到 SPI 技术:
1、Apache DolphinScheduler
Task
Datasource
2、Apache Flink
Flink sql connector,用户实现了一个 Flink-connector 后,Flink 也是通过 SPI 来动态加载的
3、SpringBoot
Spring boot spi
4、JDBC
JDBC4 也基于 SPI 的机制来发现驱动提供商了,可以通过META-INF/services/java.sql.Driver 文件里指定实现类的方式来暴露驱动提供者
5、更多
common-logging
DolphinScheduler SPI工作流程
如上图,Apache DolphinScheduler 中有 2 种 Task : 逻辑 Task 和物理 Task,逻辑 Task 指 Dependent Task,Switch Task 这种控制工作流逻辑的任务插件;物理 Task 是指 Shell Task,SQL Task ,Spark Task ,Python Task 等这种执行具体任务的 Task。
在 Apache DolphinScheduler 中,我们一般扩充的都是物理 Task,物理 Task 都是由 Worker 来调用并执行的,当启动 Worker 服务时,Worker 会来加载相应的实现了规则的 Task lib,HiveTask 被 Apache DolphinScheduler TaskPluginManage 加载了。SPI 的规则图上也有描述,也可以参考 java.util.ServiceLoader 类。
mvn archetype:generate -DarchetypeGroupId=org.apache.dolphinscheduler -DarchetypeArtifactId=dolphinscheduler-hive-client-task -DarchetypeVersion=1.10.0 -DgroupId=org.apache.dolphinscheduler -DartifactId=dolphinscheduler-hive-client-task -Dversion=0.1 -Dpackage=org.apache.dolphinscheduler -DinteractiveMode=false
org.apache.dolphinscheduler dolphinscheduler-spi ${dolphinscheduler.lib.version} ${common.lib.scope} org.apache.dolphinscheduler dolphinscheduler-task-api ${dolphinscheduler.lib.version} ${common.lib.scope}
org.apache.dolphinscheduler.spi.task.TaskChannel
插件实现以上接口即可。主要包含创建任务(任务初始化,任务运行等方法)、任务取消,如果是 yarn 任务,则需要实现 org.apache.dolphinscheduler.plugin.task.api.AbstractYarnTask。
我们在 dolphinscheduler-task-api 模块提供了所有任务对外访问的 API,而 dolphinscheduler-spi 模块则是 spi 通用代码库,定义了所有的插件模块,比如告警模块,注册中心模块等,你可以详细阅读查看。
首先我们需要创建任务服务的工厂,其主要作用是帮助构建 TaskChannel 以及 TaskPlugin 参数,同时给出该任务的唯一标识,ChannelFactory 在 Apache DolphinScheduler 的 Task 服务组中,其作用属于是在任务组中的承上启下,交互前后端以及帮助 Worker 构建 TaskChannel。
package org.apache.dolphinscheduler.plugin.task.hive;import org.apache.dolphinscheduler.spi.params.base.PluginParams;import org.apache.dolphinscheduler.spi.task.TaskChannel;import org.apache.dolphinscheduler.spi.task.TaskChannelFactory;import java.util.List;public class HiveClientTaskChannelFactory implements TaskChannelFactory { /** * Create task channel, execute task through this channel * @return task channel */ @Override public TaskChannel create() { return new HiveCliTaskChannel(); } /** * Returns the global unique identifier of this task * @return task name */ @Override public String getName() { return "HIVECLI"; } /** * Parameters required for front-end pages * @return */ @Override public List getParams() { return null; }}
有了工厂之后,我们会根据工厂创建出 TaskChannel,TaskChannel 包含如下两个方法,一个是取消,一个是创建,目前不需要关注取消,主要关注创建任务。
void cancelApplication(boolean status); /** * 构建可执行任务 */ AbstractTask createTask(TaskRequest taskRequest); public class HiveClientTaskChannel implements TaskChannel { @Override public void cancelApplication(boolean b) { //do nothing } @Override public AbstractTask createTask(TaskRequest taskRequest) { return new HiveClientTask(taskRequest); }}
通过 TaskChannel 我们得到了可执行的物理 Task,但是我们需要给当前 Task 添加相应的实现,才能够让Apache DolphinScheduler 去执行你的任务,首先在编写 Task 之前我们需要先了解一下 Task 之间的关系:
通过上图我们可以看到,基于 Yarn 执行任务的 Task 都会去继承 AbstractYarnTask,不需要经过 Yarn 执行的都会去直接继承 AbstractTaskExecutor,主要是包含一个 AppID,以及 CanalApplication setMainJar 之类的方法,想知道的小伙伴可以自己去深入研究一下,如上可知我们实现的 HiveClient 就需要继承 AbstractYarnTask,在构建 Task 之前,我们需要构建一下适配 HiveClient 的 Parameters 对象用来反序列化JsonParam。
package com.jegger.dolphinscheduler.plugin.task.hive;import org.apache.dolphinscheduler.spi.task.AbstractParameters;import org.apache.dolphinscheduler.spi.task.ResourceInfo;import java.util.List;public class HiveClientParameters extends AbstractParameters { /** * 用HiveClient执行,最简单的方式就是将所有SQL全部贴进去即可,所以我们只需要一个SQL参数 */ private String sql; public String getSql() { return sql; } public void setSql(String sql) { this.sql = sql; } @Override public boolean checkParameters() { return sql != null; } @Override public List getResourceFilesList() { return null; }}
实现了 Parameters 对象之后,我们具体实现 Task,例子中的实现比较简单,就是将用户的参数写入到文件中,通过 Hive -f 去执行任务。
package org.apache.dolphinscheduler.plugin.task.hive;import org.apache.dolphinscheduler.plugin.task.api.AbstractYarnTask;import org.apache.dolphinscheduler.spi.task.AbstractParameters;import org.apache.dolphinscheduler.spi.task.request.TaskRequest;import org.apache.dolphinscheduler.spi.utils.JSONUtils;import java.io.BufferedWriter;import java.io.IOException;import java.nio.charset.StandardCharsets;import java.nio.file.Files;import java.nio.file.Path;import java.nio.file.Paths;public class HiveClientTask extends AbstractYarnTask { /** * hive client parameters */ private HiveClientParameters hiveClientParameters; /** * taskExecutionContext */ private final TaskRequest taskExecutionContext; public HiveClientTask(TaskRequest taskRequest) { super(taskRequest); this.taskExecutionContext = taskRequest; } /** * task init method */ @Override public void init() { logger.info("hive client task param is {}", JSONUtils.toJsonString(taskExecutionContext)); this.hiveClientParameters = JSONUtils.parseObject(taskExecutionContext.getTaskParams(), HiveClientParameters.class); if (this.hiveClientParameters != null && !hiveClientParameters.checkParameters()) { throw new RuntimeException("hive client task params is not valid"); } } /** * build task execution command * * @return task execution command or null */ @Override protected String buildCommand() { String filePath = getFilePath(); if (writeExecutionContentToFile(filePath)) { return "hive -f " + filePath; } return null; } /** * get hive sql write path * * @return file write path */ private String getFilePath() { return String.format("%s/hive-%s-%s.sql", this.taskExecutionContext.getExecutePath(), this.taskExecutionContext.getTaskName(), this.taskExecutionContext.getTaskInstanceId()); } @Override protected void setMainJarName() { //do nothing } /** * write hive sql to filepath * * @param filePath file path * @return write success? */ private boolean writeExecutionContentToFile(String filePath) { Path path = Paths.get(filePath); try (BufferedWriter writer = Files.newBufferedWriter(path, StandardCharsets.UTF_8)) { writer.write(this.hiveClientParameters.getSql()); logger.info("file:" + filePath + "write success."); return true; } catch (IOException e) { logger.error("file:" + filePath + "write failed.please path auth."); e.printStackTrace(); return false; } } @Override public AbstractParameters getParameters() { return this.hiveClientParameters; }}
# 1,Resource下创建META-INF/services文件夹,创建接口全类名相同的文件zhang@xiaozhang resources % tree ././└── META-INF └── services └── org.apache.dolphinscheduler.spi.task.TaskChannelFactory# 2,在文件中写入实现类的全限定类名zhang@xiaozhang resources % more META-INF/services/org.apache.dolphinscheduler.spi.task.TaskChannelFactory org.apache.dolphinscheduler.plugin.task.hive.HiveClientTaskChannelFactory
## 1,打包mvn clean install## 2,部署cp ./target/dolphinscheduler-task-hiveclient-1.0.jar $DOLPHINSCHEDULER_HOME/lib/## 3,restart dolphinscheduler server
以上操作完成后,我们查看 worker 日志 tail -200f $Apache DolphinScheduler_HOME/log/Apache DolphinScheduler-worker.log
Apache DolphinScheduler 的插件开发就到此完成~涉及到前端的修改可以参考:
Apache DolphinScheduler-ui/src/js/conf/home/pages/dag/_source/formModel/
NOTICE:目前任务插件的前端还没有实现,因此你需要单独实现插件对应的前端页面。
TaskChannelFactory 继承自 PrioritySPI,这意味着你可以设置插件的优先级,当你有两个插件同名时,你可以通过重写 getIdentify 方法来自定义优先级。高优先级的插件会被加载,但是如果你有两个同名且优先级相同的插件,加载插件时服务器会抛出 IllegalArgumentException。
如果任务插件存在类冲突,你可以采用 Shade-Relocating Classes(https://maven.apache.org/plugins/maven-shade-plugin/)来解决这种问题。
如果您有兴趣试试 Apache DolphinScheduler ,欢迎微信添加小助手 Leonard-ds 或加入 DolphinScheduler Slack: https://s.apache.org/dolphinscheduler-slack, 我将免费全力支持您!
参考: